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A B S T R A C T  

In [Spl] and [B/Sp] it has been shown that the existence of quadratic 

spaces of uncountable dimension over finite or countable fields sharing 

the property that every infinite dimensional subspace has its orthogonal 
complement of at most countable dimension is independent of the axioms 
of ZFC set theory. Such a space will be called a strong Gross space in 
the sequel. Cardinal invariants of the continuum decide whether strong 
Gross spaces exist or not. Namely, when b --- wl a strong Gross space 

of dimension R1 exists. When p > Wl such spaces do not exist. Here we 
answer the question what happens with strong Gross spaces in case b > Wl 

or p : Wl. 

O. I n t r o d u c t i o n  

In  [Ba/G],  a symmetr ic  bi l inear  space (E,  ~)  of uncoun tab le  d imens ion  has 

been const ructed  over an  a rb i t ra ry  finite or countable  field, shar ing the proper ty  

(**) for all subspaces U C E:  if d imU > R0 then  d imU ± < R0 

The  cons t ruc t ion  could be done only unde r  the assumpt ion  tha t  the C o n t i n u u m  

Hypothesis  (CH) holds in  the under ly ing  set theory. 
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The (**)-property arose from investigations of the orthogonal group of 

quadratic spaces in [G/O]. In [G/O] it has been shown that  (**)-spaces of un- 

countable dimension always (in ZFC) exist provided the base field is uncountable. 

Note that a space of countable or finite dimension is trivially (**). In the sequel, 

a quadratic space will be called s t r o n g l y  Gros s  if it has the (**)-property, its 

dimension is uncountable and its base field is countable or finite. 

In [Spl] and [B/Sp] it has been shown that the existence of strong Gross spaces 

is independent of the axioms of ZFC set theory and, conversely, that strong Gross 

spaces can exist in models where CH fails. Involved are cardinal invariants of 

the continuum, especially b and p. Here b is the minimal cardinality of a family 

of functions w ~ w which is unbounded with respect to the quasi-ordering <* 

defined by f <* g if f(n) < g(n) for all but finitely many n, whereas p is defined 

as the minimal cardinality of a filter on the natural numbers such that there 

exists no infinite set which is almost included in every member of the filter. For 

b and p the relations wl _< p _< b < e are provable in ZFC. (By c we denote the 

cardinality of the continuum 2".) In ZFC, none of these relations can be proved 

to be either an equality or a strict inequality. 

In models for ZFC where p > wl holds strong Gross spaces do not exist. 

Martin's Axiom (MA) implies p > wl. Conversely, if b = wx holds, then a strong 

Gross space of dimension R1 exists over every field which is the extension of an 

arbitrary finite or countable field by countably many transcendentals ([B/Sp]). 

In [Sh/Sp] this result has been generalized to arbitrary infinite fields. However, 

b = wx does not imply that a strong Gross space exists over a finite field (see 

[Sh/Sp]). 

The obvious questions remaining open are: 

Question I: Is the assumption b > wl (weaker than p > wl) strong enough to 

prove that  strong Gross spaces do not exist? 

Question 2: Is the assumption p = wl (weaker than b = wl) strong enough to 

prove that strong Gross spaces exist? 

In other words: Is one of the statements "b = wt" or "p = wt" equivalent to 

"Strong Gross spaces exist"? 

Here we give negative answers to both questions. 

In Chapter 2 we show that strong Gross spaces are not destroyed by forcing 

with the natural partial ordering to adjoi n a dominating function (Hechler forc- 
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ing). Iterating this forcing over a model where strong Gross spaces exist we get 

a model where such spaces still exist and b > to1 holds. 

In Chapter 3 we define a partial ordering pk with the ccc (countable chain 

condition), where k is an arbitrary finite or countable field, such that  no quadratic 

space over k which is in the ground model is strongly Gross in the extension V Pk 

Iterating this forcing such that all possible fields are taken into consideration we 

arrive at a model where no strong Gross spaces exist. By choosing the ground 

model appropriately we make sure that p = wx holds in the extension. 

In order to motivate the word "strong" in "strong Gross space" we mention 

that the notion of "Gross space" is obtained by replacing in the definition of a 

strong Gross space the (**)-property by the following weaker property 

(*) for all subspaces U C E: if dimU > R0 then dimU ± < d imE 

In [B/Sp] and [Sh/Sp] there are partial independence results concerning Gross 

spaces. Gross spaces of dimension e exist if MA holds. Note that this contrasts 

with the situation for strong Gross spaces. In the model obtained by iterated 

perfect set forcing there are no Gross spaces in dimension e. The partial ordering 

P* from Chapter 3 can also be used to produce such a model. But it is still an 

open question whether there is a ZFC-model where Gross spaces do not exist in 

any dimension. 

For a survey on the whole subject see [Sp4]. 

1. P r e l i m i n a r i e s  

1.1. THE CARDINAL INVARIANTS b AND p. 

If f ,  g E Ww then we say f e v e n t u a l l y  d o m i n a t e s  g, and we write g <* f ,  

iff ~kVn > k g(n) < f (n) .  k family F C ww is < * - u n b o u n d e d  iff there is no 

f E wto such that Vg E F g <* f .  Then b is defined as the minimal cardinality 

of a <*-unbounded family in wto. 

Let [A] w denote the set of all countably infinite subsets of the set A. For a, 

b E [t0] w, let a C_* b iff a - b is finite. If ~" C__ [to]w then a set a C_ to is called 

p s e u d o - l n t e r s e c t i o n  of ~" iff Vb E ~ ' a  C* b. We say that ~" has the s t r o n g  

f ini te  i n t e r s e c t i o n  p r o p e r t y  iff every finite set of elements of .T" has infinite 

intersection. Then p is defined as the minimal cardinality of a family in [to]~ with 

the strong finite intersection property which has no infinite pseudo-intersection. 
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We quote the following theorems from [vD] which form part of the folklore in 

set theory. 

THEOREM 1 (part of Theorem 3.1.): a) wl _< p < b < c. 

b) b and p are regular. 

c) I f w < _ t c < p t h e n 2  ~ = c .  

THEOREM 2 (part of Theorem 5.1.): Let t¢ and A be regular cardinals with wl < 

t¢ < A. It  is consistent with ZFC that e = A and b = p = t;. 

THEOREM 3 (a consequence of Theorems 5.3 and 3.1.): It is consistent with ZFC 

that b > p. 

Remark: In this paper, two models of ZFC are investigated where b > p holds. 
| 

1.2. ITERATED FORCING. 

On iterated forcing we agree with [B], [3] or [K]. We consider only finite-support 

iterations. Thus an iteration looks like (P~ : # _< a), where P# is the result of 

the first ~ stages of the iteration (the direct limit if ~ is a limit ordinal), and for 

each ~ < a there is some P#-name Q# such that 

II-p~ Q# is a partial ordering 

and P~+I is isomorphic to the forcing product P~ * Q~. Throughout this paper 

we use the following well-known facts about iterated forcing (sometimes without 

explicitly mentioning them). 

THEOREM 4 ([B], Theorem 1.2.): I f  ~ < a, G~ is P~-generic over V and G~ = 

{pIE : p E G~}, then G~ is P~-generic over V.  Thus we have VIGi l  C_ V[G~]. 

THEOREM 5 (essentially [B], Lemma 3.5; see also [K], Lemma 5.14, p. 276.): 

Suppose Pa has the countable chain condition. I f  G~ is Pa-generic over V and 

in V[G~], X C V is a set of cardinality < cf(a), then there ex/sts fl < a such 

that X E V[Ga]. 

THEOREM 6 ([B], Cor. 2.3.): Assume that for every ~8 < a II-t,a Qa has the 

countable chain condition. //" direct limits are taken everywhere then P~ has the 

countable chain condition. 



Vol. 79, 1 9 9 2  ITERATED FORCING IN QUADRATIC FORM THEORY 301 

THEOREM 7 ([B], Lemma 3.2 in case A = wl): Suppose P has the countable 

chain condition, [P[ < ~ and ~ '  = to. / f lbp  10[ <- ~, then [P*  Q[ < ~. 

THEOREM 8 ([B], Lemma 3.3 in case A = Wl): Suppose P has the countable 

chain condition, IPI < ~ and ~ -- ~. Then IF-p e < ~. 

1.3. FORMS. 

We consider vector spaces E over a countable or finite commutative field k 

of arbitrary characteristic which are equipped with a symmetric bilinear form 

: E x E -4 k. For a subspace U C E the o r t h o g o n a l  complement U ± is 

defined as U ± = {x e E : Vy e U ¢ ( x , y )  = 0}. The space ( E , ¢ )  is called 

nondegenerate  if E ± = {0}. Needless to say that a nondegenerate space may 

contain i so t rop i c  vectors, i.e. nonzero vectors z such that ~(x,  x) = 0. 

We remark that all the results in this paper and in [B/Sp] are true in a fairly 

more general context. At first, everything remains true if we generalize to or- 

thosymmetric sesquilinear forms over a skew field which is endowed with an 

involutory antiautomorphism (see [G] for the definitions), since what is needed 

essentially is that  the form defines a symmetric orthogonality relation. Moreover, 

using a representation theorem (for AC-lattices of length > 3 equipped with a 

polarity (see [G] and [Ma/Ma])), then all the results can be transferred to the 

level of abstract ortho-lattices. Of course, it should as well be possible to carry 

out all the proofs on this level. This has been announced in [Sp2] and is worked 

out in [Sp3]. 

2. Exis tence  o f  s trong Gross  spaces is consistent  with b > wx 

By Theorem 1 in [Ba/G], strong Gross spaces of dimension ~1 exist under the 

assumption that  CH holds. In [B/Sp] it has been shown that CH is not necessary 

for this result. In fact, forcing with the Cohen algebra to enlarge the continuum 

produces strong Gross spaces. We quote Theorem 2, Chapter 2, which cannot be 

improved since c is an upper bound for the dimension of a strong Gross space. 

Since k is countable or finite this follows quickly from the Erdfs-Rado parti t ion 

Theorem. More general, it is not difficult to see that a space (E, if) which is 

defined over a field k of arbitrary cardinality and has the (**)-property satisfies 

d i m e  _< lkl ~. 

THEOREM 1 ([B/Sp], Theorem 2, Ch. 2.): Suppose we force by adding ~ Cohen 

reeds where ~ > R0. Let E be a ~-dimensional vector space over a t]nite or 
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countable field k in the extension. 

Then there exists a nondegenerate symmetric bitinear form i on IF, such that 

for any countable linearly independent set X C_ E, for a J1 but countably many  

vectors y E E it is true that {•z ,  V) : z E X }  = k. Hence, in particular, (E, i )  

is strongly Gross. 

In [B/Sp] (Chapter 4) a strong Gross space of dimension R1 and over a count- 

able field has been constructed under the sole condition b = tal. The question 

remained open whether strong Gross spaces can exist when b > tax holds. We 

prove here that strong Gross spaces are not destroyed by forcing with a finite 

support iteration in which each step amounts to forcing with the natural par- 

tial ordering P to adjoin a dominating function. Hence the iteration will be 

(P,~ : a < to} where P~ is the direct limit of {P~ : /3 < a} if a is a limit and 

P,~+I ~ P,, * Q~ where Q~, denotes P defined in V e" . 

The partial ordering (P, <) is defined as follows. Let I S  = {s E U,,~,~ "w : s 

is strictly increasing}. Then P = {(s, f ) :  s E IS ,  f E ' ~ ,  f strictly increasing}, 

and we set (s, f )  < (t, g) iff s __3 t and ¥ n f ( n )  > g(n) and Vn > length(t) s(n) > 

g(n). It is clear that P and hence P~ (by Theorem 6, §1) has the countable 

chain condition since any two elements of P with the same first coordinate are 

compatible. It is not difficult to see that forcing with P adds a function in ~0J 

which eventually dominates all functions in the ground model. 

Hence, by what we claimed above, if we force with P~ where cf(t¢) > to1 over a 

model where strong Gross spaces exist, then we get a model where such spaces 

exist and b > tax holds. 

But we can get even more. Let V be the model in Theorem 1 where t¢ > "~1 is 

regular such that e = t¢ holds. Then strong Gross spaces of maximal dimension 

e exist in V. We claim that the continuum is not affected by forcing with P~. 

In fact, if Q denotes P defined in V e then (since P satisfies the countable chain 

condition) IFp IQI = ~; furthermore t; '~ = e"  = c = n. Hence, by Theorem 7, §1 

we have IP * Q[ = to. By induction we get IP I = ~, = d  hence by Theorem 8, §1 

we conclude IFp. e = n. Clearly V P* satisfies b = ~; (to is regular), and thus we 

get the following result: 

THEOREM 2: Suppose we force by adding t: Cohen reals such that in the exten- 

sion V,  t¢ is a regular cardinal and e = t¢ holds. Let P~ be the finite support 

iteration of t¢ many Hechler forcing notions as defined in V.  
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Then  in the  extension V P~ s trong Gross spaces o f  (max imal )  dimension c exist .  

Proof: We have to show that strong Gross spaces are preserved under forcing 

with P~. So in V, let (E, ~) be strongly Gross over k. Without loss of generality 

we may assume that dimE = wl. In fact, any uncountable dimensional subspace 

of E, if equipped with the restricted form, is strongly Gross, and conversely, if 

(E, (I)) is not strongly Gross in V P. (since P~ has the countable chain condition) 

then there exists an Rl-dimensional subspace of E in V which is not strongly 

Gross in the extension. 

In [B/D], a sequence (he: ~ < A) in [w] '~ of length A where cf(~) > w is called 

even tua l ly  na r row iff Va E [w]~3~ < AVr/ > ~ a - a~ is infinite. Theorem 

3.3 [B/D] states that any eventually narrow sequence in V remains eventually 

narrow in V P* . There is a close relation between preservation of eventually nar- 

row sequences and preservation of strong Gross spaces. The following definition 

provides the link. 

Definition: A sequence (A¢ : ~ < ~) of subspaces A~ C_ E with cf(A) > w is 

called even tua l ly  l inear ly  na r row iff for any infinite linearly independent set 

A C_ E there exists ~ < A so that for every 7/> ~ A - A~ is infinite. | 

Now fix an enumeration (x~ : ~ < Wl) of E lIE[ = [k[.dimE = RI]. We 

claim that ((ze) ± : ( < wl) is eventually linearly narrow in Y. [Otherwise, 

there exists an infinite linearly independent set A C_ E such that A - (x¢) ± is 

finite for uncountably many ~. We may certainly find an infinite A' C A and 

an unbounded B C Wl such that Y~ E B A '  C_ (x~) ±. By countability of k we 

conclude dim spanA '± = R1. This contradicts the assumption that E is strongly 

Gross in V.] 

On the other hand, if in V P" there exists an infinite dimensional subspace 

U C E so that dimU ± = R1 (i.e. E is not strongly Gross in V P'), then clearly 

((x~) ± : ~ < wl / i s  not eventually linearly narrow in V P~ . 

From the previous two paragraphs we conclude that it suffices to show that 

eventually linearly narrow sequences are preserved by forcing with P~. 

If the field k is finite we may apply Theorem 3.3 [B/D] without difficulty, since 

then ((x~) ± : ~ < wl) is even an eventually narrow sequence in the sense that 

VA E [E]~3~ < WlVr/> ~ A - A~ is infinite. [Any A E [E]" contains an infinite 

linearly independent set.] 

If k is infinite this is clearly not true, since an arbitrary finite dimensional 
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subspace (which is infinite as a set) is contained in uncountably many (z~) ±. So 

we have to give new arguments. 

As in the proof of Theorem 3.3 in [B/D] the crucial step is the successor step. 

THEOREM 3: Any  eventually linearly narrow sequence (A¢ : ~ < A) in V remains 

eventuaJ1y linearly narrow in v P. 

Proof: By the way of contradiction assume that the theorem is not true. Then 

there exist (s, f )  E P and a P-name ¢i such that 

(s, f )  tl- ~i. C E is a countably infinite linearly independent set 

such that V~ < A3r/> ~1i - A n is finite. 

By the countable chain condition of P there exists a subspace U C E of 

countable dimension, say U = (~ne,,, kun, such that U E V and 

(s,f) MF AC_U 

We claim that there exists a P -name / : / so  that 

(1) (s, f )  IF i / enumera tes  fit and V i e  w ~I(i) q~ ( ~  ku i 
j<i 

[In order to obtain such a name proceed as follows. In V, fix a well-ordering -~ 
m of U such that for all x = Y~i=l aiu,,,,, y = ~ = ~  fliu,,, E U the following holds: 

max{mi : i < m} < max{ni : i < n} ~ x ~ y 

It is clear that every infinite linearly independent family in U is given type w by 

the ordering -< and its -<-ith element does not lie in span{u/ :  j < i}. So let/2/ 

be a P-name such that 

(s, f )  II-/:I enumerates ii, according to 

(We use the existential completeness of forcing to get such/:/.)] 

Now for each ~ < A fix (s~, f~) < (s, f )  and n~ q w, if possible, such that  

(2) (s¢, f~) Ib Vi > nq/:/(i) E A¢ 

Clearly, (s¢, f~) and n~ will be defined for ~ belonging to an unbounded subset 

of A. By cf(A) > w there exist u, n and an unbounded B _C A such that  V~ E 

Bs~ = u and n~ = n. 
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Again, by cf(A) > w we may choose h E ~w such that for all m E w the set 

{~ e B:  him c h }  is cofinal in A. 

The rest of the proof of Theorem 3 is organized as follows. We will prove 

Lemma 2 which is an analog of Lemma 3.2 [B/D] under the assumption that 

Theorem 3 is false and then derive a contradiction. The proof will be by induction 

on elements of IS ,  justified by the following Lemma I which is Theorem 2.1 [B/D] 

and holds unconditionally. 

Suppose D is an open and dense subset of the p . o . P .  (" Open" means Vp, q E P 

i f p  _~ q and q E D, then p E D.) Define a sequence (D~ : a < Wl) of subsets of 

I S  by induction as follows: 

(1) Let Do = {s E I S :  3 f ( s , f )  E D}. 

(2) Let D,,+I = {s E I S :  (3n > Isl)(Vk E w)(3t E D~,)s C_ t and It] = n and 

(Vi) if I~1 -< i < n then t(i) > k}. 

(3) If a is a limit ordinal then let D~, = U{D#:  fl < a}. 

Then (D~ : tr < wl) is a C-increasing sequence of subsets of IS .  Since I S  is 

countable there exists 7 < wl such that D. r = D.r+I. 

LEMMA 1 ([B/D], Theorem 2.1.): Suppose D C_ P is dense and open and (D,~ : 

Ot < Od 1 ) and 7 are defined as above. Then D v = IS .  

Proof of Lemma 1: Suppose that for some s E I S  we had s ¢ D. r For n < w 

let 

w .  = {t ~ I S :  s c t and Itl = n and t ~ D-~ ~nd (Vs C t '  C t)t' ¢ D.,} 

It is not difficult to see that each Wn is finite. Hence we can define a strictly 

increasing f E "w such that (Vn)f(n - 1) > max{t(n - 1):  t E Wn}. Since D is 

dense we find (t, g) E D such that (t, g) < (s, f ) .  Now t E D0 and so some t' C t 

belongs to some Wn where n > Isl. But this is impossible by the definition of f 

and since t ' (m) > f ( m )  for all m E dom(t ')  with m > Is[. | 

LEMMA 2: For edl i > n and t such that (t, h) < (u, h) the set 

Zt(i) = {F  C U: F is a subspace of finite dimension and Vg3(t',g') < ( t ,g)  

(t', g') IF I-I(i) e F} 
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is not empty. 

VroofofLemma 2: Let i > n. The set D = {(t,g) : 3z(t,g) tk i-/(i) = x} is 

dense and open. Hence by Lemma 1, U~,<~, Da = IS. The proof is by induction 

Oil ~ .  

For t 6 Do the statement is clear. 

Let t 6 Da+l - Da such that (t, h) < (u, h). There exist a sequence (tn)ne~ 
in D~ and m 6 w such that 

(vn) t  c_ t .  and It,,I = m and t,,(Itl) _> n and (tn,h) < (t,h) 

By induction hypothesis there exist Fn E Zt. (i). We may assume that  all the 

F,, are of minimal dimension. Hence for every subspace M C F,,, M # F,, there 

exists g E ~'w so that 

V(t', g') < ( t . ,  g) (t', g') It- H(i) ~ M 

If F = ~-~,,~,~ F,, is of finite dimension, then clearly F E Zt(i) and we are done. 

Suppose d imF = oo. We claim that this cannot happen. In V, we define a 

linearly independent set {yt : 1 E w} in F by induction so that 

VN~: 6 B' := {~: 6 B : him C A}Yl 6 A~ 

This is a contradiction since (A~ : ~ < A) then is not eventually linearly narrow 

in V. 

We define {yl : I E w} as follows: 

1) We claim that there exists Y0 E F0 - {0} so that (¥~ E B') Y0 E A¢. Suppose 

not. Then F o n N ~ w  A¢ = {0} and hence there exist finitely many ~1, . . . ,  ~p E B' 

so that  

P 

(3) F o n  N A~ = {o} 
j = l  

Choose g E '%, such that VnV1 < j < pg(n) _> f~  (n). Since Fo E Zto(i) there 

exists (t', g') < (to, g) such that 

(4) (t',g') IF H(i) E Fo 

Then clearly for all 1 < j < p we have (t ' ,g ')  < (u,f¢j) and thus by (2) 

(5) (t',9') iF ~q(i) ~ A¢ 
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But (4) and (5) put together contradict (3). 

2) Assume y l , . . . ,  Yt have been chosen linearly independent such that for all 

l _ < j < l y j • F , , ~  a n d V ~ E B ' y j • A  e. 

There exists nt+l so that M := Fro+ ~ t t3 ~"~j=l F-i C Fro+," By minimality of 

dimF,~+~ there exists g • ~w so that 

(6) V(t', g') < (t,,,+,, g) (t', g') I~-/:/(i) ~ M 

Since F.~+I E Zt.,+~ (i) the set 

N = {x • F . ,+ ,  : 3( t ' ,g ' )  < ( t . ,+ , ,g)( t ' ,g ' )  I~- ~I(i) = z}  

is not empty. By (6), N n M = 0. Clearly dim spanN < oo. 

Now choose ~1, . . . ,  ~p • B'  such that the dimension of spanNnA~t n . . .  nA~, is 

minimal. Then clearly we have N N A  6 n. . .nACp c spanNnACt n . . .nA~p c_ A~ 

for all ~ • B' .  Consequently, in case N n A~t n . . .  n Acp ~ 0 we may choose Yt+l 

in this intersection arbitrarily. We claim that this case must occur. 

Otherwise we have N n A~ N. . .  n A~p = 0. Choose gt > g, f¢1,- •. ,  f~p. There 

exist x • N and ( t ' ,g")  < (tm+,,g')  such that ( t ' ,g")  It- ~I(i) = x. But also 

(t', g") _< (u, fei) and hence (t', g") I~- H(i)  E A~j for all 1 _< j _< p, and thus 

x • N N A 6 O . . .  n ACp, a contradiction. 

Hence, Lemma 2 is proved. I 

By Lemma 2 w e  may choose F~ • Z,,(i) for every i > n. Then by (1) there 

exists an increasing sequence (il)le~ so that  

j<t 

As in the proof of Lemma 2 we may find a linearly independent set {yl : l E w} 

such that yz E Fit and 

VN~ E B Y~ E A~ 

Hence the sequence (A e : ~ < ~) is not eventually linearly narrow in V, a con- 

tradiction. This proves Theorem 3. I 
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THEOREM 4: Any eventually linearly narrow sequence remahas eventuMly lin- 

early narrow in Vv ' .  

Proof: By induction on a _< ~. The successor step is handled by Theorem 3. For 

limit ordinals the proof of Theorem 3.3 [B/D] applies without difficulty. Suppose 

(A~, ~ < A) is eventually linearly narrow. If el(a) > w then Pa introduces no 

new subspaces of countable dimension that have not already appeared at some 

earlier step of the iteration. So we may assume el(a) = w and the Theorem is 

true for/3 < a. Let (an, n E w) be an increasing sequence cofinal in a. 

Suppose that  the Theorem is false for a. So for some P~-name /:/ and some 

p E Pa we have 

p It-/:/enumerates a countably infinite linearly independent set in E 

such that V~ < Aqr/> ~ r ange / : / -  A n is finite. 

In V, for each ~ < A choose a condition p~ _< p and n~ E w, if possible, so that 

p~ I~- Vi _> n~/:/(i) E A~ 

Clearly, pe and ne will be defined for ~ belonging to some cofinal subset of A. Since 

P~ is the directed limit of the P~,/3 < a,  for each ~ we have p~ E Pa,, for some 

m E w. Choose n and m such that for cofinally many ~ E A we have p~ E P~,, 

and n¢ = n. Since P~,, satisfies the countable chain condition there exists a 

P~,,-generic filter G which contains cofinally many of the p~'s where n~ = n. 

Now define B as the set of ~ such that for some p E G p Ih Vi > nf t ( i )  E A~. 

Clearly B E V[G] and B is unbounded in A. Hence we conclude 

V[C] ~ {/:/[a](i): i > n} _c F']{A¢ : ~ • B}. 

But this contradicts the inductive hypothesis that (A~, ~ < A) is eventually lin- 

early narrow in V va,. . I 

I 

Remark 1: The attentive reader may have noticed that in Theorem 2 we stated 

less than one could conceive to be true. 

We forced twice. At first we adjoined Cohen reals to create strong Gross 

spaces over arbitrary fields. Then we adjoined Hechler reals and proved that  

the spaces existing over the fields in the first-step model are preserved. But a 
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dominating function creates new fields as can be seen by arguing with infinitely 

many irreducible polynomials over the rationals (of unbounded degree). The 

dominating real gives a new subset of them (dominate the degrees). Look at the 

algebraic extension given by adjoining the zeros of the polynomials in it. We do 

not know whether Hechler Forcing produces strong Gross spaces so we do not 

know whether in the final extension strong Gross spaces exist over all fields. 

To overcome this difficulty just adjoin ~ Cohen reals (with finite support) not 

only at the beginning of the iteration but again and again after every dominating 

real. Then a new field occurs in an intermediate stage and, by Theorem 1, the 

next block of Cohen reals generates a strong Gross space of maximal dimension 

(which is to) over that field. But this space could be killed again later in the itera- 

tion by a Cohen step. Fortunately this will not happen since every finite-support 

iteration of ccc partial orderings which preserve strong Gross spaces itself pre- 

serves such spaces. (This is just the limit step of the proof of Theorem 4, since 

there we used no additional information on the posets of the iteration.) But Co- 

hen forcing is the finite-support limit of the trivial forcing with two incompatible 

elements. So we are done. I am indebted to Jim Baumgartner for this hint. | 

Remark 2: We remark that  Theorem 4 is true for vector spaces defined over 

arbitrary (not necessarily finite or countable) fields. | 

Remark 3: Translating the proof of Theorem 3 back to the original situation 

in [B/D], one obtains a purely combinatorial argument avoiding elementary sub- 

structures. | 

3.  N o n e x i s t e n c e  o f  s t r o n g  G r o s s  s p a c e s  is  c o n s i s t e n t  w i t h  p = ~1  

By Theorem 1 in Chapter 2 of [B/Sp], strong Gross spaces do not exist if p > wl 

holds. Since under b = wl a strong Gross space always exists ([B/S], Ch. 4) it 

is natural to ask whether this is true under the weaker condition p --- wx (p _( b 

by Theorem la),  §1). Here we give a negative answer to this question. We prove 

the following Theorem: 

THEOREM 1: Let V be a model of ZFC which has been obtained from a mode/ 

for ZFC+GCH by adjoining many subsets Of Wl by the standard a-closed Cohen 

forcing. In V,  let ~ > wl be a regu/ar cardinal such that ~ < 2 ~'1 . 

Then in V there exists a ccc partial ordering P such that in the extension V p 

there are no strong Gross spaces and p = wx and c = t¢ hold. 
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Proof." The first step in the proof will be to define a partial ordering pk where 

k is an arbitrary finite or countable field such that no quadratic space over k in 

the ground model will be strongly Gross in the extension V Pk . 

Elements of pk are pairs (s, A) where 

1) s = ( s l , . . . ,  s,,) is a finite sequence of functions si : w ~ k such that (Vi) 

support(si) = {m:  si(m) # 0} is finite. (The si's will describe vectors.) 

2) A is a finite set of functions f : w ~ k. (The f ' s  may be thought of as 

sequences of Fourier coefficients.) 

On pk we define an ordering < by setting 

(s, A) _< (t, B) iff s D t and A __D B and 

(Vi) if i >_ length(t) then (Vf E B) ~'~,E,~ s i (n) ,  f ( n )  = 0 

In the sequel, we will abbreviate the formula E,,E,o s i (n) ,  f (n )  = 0 by writing 

si 3_ f .  Needless to say that the dot in this formula is the multiplication in the 

field k. 

Since two conditions with the 

R0, pk clearly has the countable 

same first coordinate are compatible and Ik[ _< 

chain condition (is even a-centered). 

Now let G be pk-generic over V and set S = UprlG. 

PROPOSITION 1: S is an in~nite sequence of vectors Si, and i f  f : w --* k is in 

V, then there exists i < w such that (Vj >__ i)Sj 3, f .  

Proof of Prop. 1: It suffices to see that for arbitrary n and f the set of pairs 

(s, A) such that Is[ >_ n and f E A is dense in pk.  Let t be of length _> n such 

that t _D s and ti is the zero vector for i _> Is[. Then clearly (t, A U {f}) is as 

desired and extends (s, A). | 

The intention is that in every quadratic space (E, ,I~) in V the vectors given by 

S will describe subspaces with a large orthogonal complement. So we must be 

sure that they are of infinite dimension. This is accomplished by the following 

Proposition. 

PROPOSITION 2: Considered as vectors in the k-vector space k °', the Si's span 

an infinite dimensional subspace. 

Proof of Prop. 2: By genericity, it suffices to show that for every n the set 

D,, -- {(~, A) E pk: (3i < Isl)(3m _> n)~(~) # 0} 
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is dense. 

Let (s,A) E pk where A = { f~ , . . . , f p} .  Consider the following system of p 

homogeneous equations in p + 1 unknowns ~ , , . . . ,  ~n+p 

fl(n)~n -t- . .- q- fl(n'Fp)~n+p = 0 

f , ( ~ ) ~ .  + . . .  + f , ( ~ + p ) ~ . + ~  = o 

and let ( ~ . , . . . ,  ~.+p) be a nontrivial solution vector. We set 

{ ( m  i f n < _ m < _ n + p  
till(m) = 0 otherwise 

and t = s~ t l ,  I. Then clearly (t, A) < (s, A) and (t, A) E D,,. 

Now we are able to prove the following theorem: 

THEOREM 2: ha V, let (E, ~) be a quadratic space over k of uncountable dimen- 

sion. I f  U C E is a subspace of infinite dimension and X C E is uncountable 

with cf([X D > w and U,X  E V, then in V Pk there exists an infinite dimensional 

U' C_ U such that U ' ± N X  has cardinality IX]. Consequently, dimU '± >_ [X] and 

(E, ~) is no~ strongly Gross in V Pk . 

Proof of Theorem 2: Let U = ~ n e w k u n .  For every x E X set fz = (~(X, Un): 

n E w). Then clearly fx E V. Hence by Proposition 1 there exists ix E w such 

that  (Vi > i=)Si ± f=. We conclude Vi > i~ 

~(=, Z s,(~)u.) = Z s,(~)/.(.) = o 
new new 

By cf( IXl)  > ~ we may choose i and X '  C__ X such that IX ' l  = IXl and 

(Vx E XI)i= = i. Hence, if we let 

v' = span { ~  s j (n)u.  : j >_ i) 
n e w  

we have X I C U ~± and dimU t = R0 by Proposition 2. | 

Theorem 2 does not rule out the possibility that  in V Ph either strong Gross 

spaces in V over a field distinct from k are preserved or spaces are strongly Gross 

which have not been in V. In order to get a model where provably no strong Gross 
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space exists we i te ra te  forcing with  p k  where  again  and  again  k runs  t h rough  

all possible  fields. Clearly it suffices only to consider fields wi th  a subset  of  w as 

under ly ing set. 

Our  g round  model  V satisfies CH and 2 ~1 ~> ~ > Wl. We will make  sure tha t  

in the  final extension c -- ~ < 2 ~1 will hold. Then  by  T h e o r e m  lc) ,  §1 we know 

tha t  p = wl is true.  

By induct ion we define a finite suppor t  i tera t ion (P~ : a ~ ~) such t ha t  the  

following are true: 

1) For all a < ~ we have P~+I  -- Pa  * ( ~  such tha t  

l~'po (~a has the countable  chain condition and [(~a[-- 

2) If G~ is P~-generic over V and k is a finite or countable field in V[G,,] with 
a subset of w as its underlying set, then for arbitrarily large a < ~ we have 

P~+I = P~ * Q~ where Q~ denotes pk defined in V[G~ I. (It goes without 
saying that by Theorem 5, §1 k E V[G~] for some a < ~.) 

Suppose a < ~ and P~ and QS have been determined such that 1) holds for 

all/3 < a. By Theorem 6, §1, P~ has the countable chain condition for all/3 _< a. 

So, using induction and Theorem 7, §i wc conclude [Pa[ < ~. Putting together 

these facts,  by  T h e o r e m  8, §1 we get l~-p~ c _~ ~. 

Hence there  is a P a - n a m e  (k~ : 3' <~ ~) such tha t  

[bp~ (k~ : 7 < ~) enumera tes  all finite or countable  fields wi th  a subset  of  

as under ly ing set 

Fix  ~r : ~ --* ~ x ~ such tha t  for every (/3, V) E ~ x ~ there are a rb i t ra r i ly  large 

a < ~ such that ~'(a) -- (/3, 7), and whenever ~r(a) -- (/3, 7) then/3 _< ~. 

Let a = Ir(/3, 7). Since/3 ~_ a we m a y  t rea t  k~ as a P a - n a m e  and hence we 

m a y  define (~ as a P ~ - n a m e  such tha t  

Then clearly, Ikpo "0~ has the countablc chain condition", and by Ikpo c _< s 

as seen above we also have [kpo [0a[ _< ~. This completes the definition of 

(Pa :ol _< s). 

Now we are able to finish the proof of Theorem 1. As in Theorem 2, we can 

get even more: 
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THEOREM 1 (revised): Let G~ be P~-generic over V. In V[G~], let k be a finite 

or cotmtable field and ( E,  ~ ) a quadratic space over k of  uncountable dimension. 

Then for every subspace U C_ E of infinite dimension and every uncountable 

X C_ E with IXl < ~ and cf(lXl) > to there exists a subspace U' C_ U of infinite 

dimension such that U '± N X has cardina~ity IXl and hence dim(U '±) > IXl. 
In particular, ( E, ~ ) is not strongly Gross. 

Furthermore,  V[G~] satisfies p = tox. 

Proof  of  revised Theorem 1: We may certainly assume that  the underlying set 

of k is a subset of to and dimU = R0. 

Set E '  = span(X O U), (I)' = ~]E* x E'. By Theorem 5, §1 there exists fl < 

such that  k, U, X and (E ' ,  @') are all in V[Ga]. Then k must be the denotation 

of some k~. Let ~r(~) = (/L'r)- By construction, 0 -  denotes pk  defined in V[G,];  

hence V[G~+I] = V[G.] P'. By Theorem 2, in V[G~+1] there exists a subspace 

U' C U of infinite dimension such that  U '± 13 X has cardinality IXl. 
As for the second statement we have already seen that  Ibp, c < ~;. It is obvious 

that  during the iteration cofinally many times new subsets of to get added. Hence 

we conclude Ibp, c = n. Since P~ is tee and thus preserves cardinals, 2 ~1 > 

holds in v[a,] since it holds in V. Hence by Theorem lc), §1, p = tox holds in 

V[G,,]. This completes the proof of Theorem 1. II 

Remark 1: Since under the assumption b = tox a strong Gross space always 

exists, the model V P~ of Theorem 1 clearly satisfies b > tox. It even satisfies 

b = e, since by the following fact, at every step of the iteration where we force 

with p k  such that  k is infinite a dominating function is added. 

FACT: Suppose k is a countably infinite field. Then forcing with pk  adjoins a 

function f : to -* to which dominates all functions in wto in the ground mode/. 

Proof." In V, fix ab i jec t ion  ~r : {t E k ~ : {n : t (n)  ~ 0} finite } ~ to. Let 

G be Pt -gener ic  over V and let ti, i E to, enumerate S = U p r l G  such that  

ViBj > i t i ( j )  ~ O. Define f ( n )  = ~r(t,,). We claim that  f dominates the ground 

model reals. Given g E (~to)v define h a E k"  as follows. By induction on n 

choose ha(n ) so that  Vt E ~r - l{0 , . . .  ,g(n)} if n = max{ i :  t(i) ~ 0} then t ,£ h a. 

Since k is infinite such a choice is possible. Clearly h a E V. 

If  now (s, A) is in G and h a E A then Vti E S - s we must  have f ( i )  = 7r(ti) > 

g(i) so f dominates g. | 
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Remark 2: In the model of Theorem 1, 2 ~ < 2 w~ holds. Once we have obtained 

such a model, it is possible to get a model where no strong Gross spaces exist 

and p = wx but 2" = 2 °'1 holds. This kind of argument we heard from J im 

Banmgartner .  

In fact the model of Theorem 1 is a two-step model. At first we force with the 

Cohen algebra over a model of GCH to get 2 ~1 > I¢ and then via P,~ to make sure 

that  there are no strong Gross spaces. In the final extension there is a witness 

W to p = wl and that  witness has cardinality wl. Of course P~ has cardinality 

to. Thus if we look at the model V[W, Ps][G~], where G~ is the P,,-generic set, 

it is clear that  this is a submodel of the original two-step model so there are no 

strong Gross spaces in it. It  also contains W so it must be true that  p = wl. 

Finally, adding W and P~ required no more than ~ subsets of wl so we must have 

2 '~ = 2" = to, as desired. | 
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